
Short Pairing-based Non-interactive Zero-Knowledge
Arguments

Jens Groth?

University College London
j.groth@ucl.ac.uk

October 26, 2010

Abstract. We construct non-interactive zero-knowledge arguments for circuit satisfiability with
perfect completeness, perfect zero-knowledge and computational soundness. The non-interactive
zero-knowledge arguments have sub-linear size and very efficient public verification. The size of
the non-interactive zero-knowledge arguments can even be reduced to a constant number of group
elements if we allow the common reference string to be large. Our constructions rely on groups with
pairings and security is based on two new cryptographic assumptions; we do not use the Fiat-Shamir
heuristic or random oracles.

Keywords: Sub-linear size non-interactive zero-knowledge arguments, pairing-based cryptography,
power knowledge of exponent assumption, computational power Diffie-Hellman assumption.

1 Introduction

Zero-knowledge proofs introduced by Goldwasser, Micali and Rackoff [GMR89] are fundamental
building blocks in cryptography that are used in numerous protocols. Zero-knowledge proofs
enable a prover to convince a verifier of the truth of a statement without leaking any other
information. The central properties are captured in the notions of completeness, soundness and
zero-knowledge.

Completeness: The prover can convince the verifier if the prover knows a witness testifying
to the truth of the statement.

Soundness: A malicious prover cannot convince the verifier if the statement is false. We dis-
tinguish between computational soundness that protects against polynomial time cheating
provers and statistical or perfect soundness where even an unbounded prover cannot convince
the verifier of a false statement. We will call computationally sound proofs for arguments.

Zero-knowledge: A malicious verifier learns nothing except that the statement is true. We
distinguish between computational zero-knowledge, where a polynomial time verifier learns
nothing from the proof and statistical or perfect zero-knowledge, where even a verifier with
unlimited resources learns nothing from the proof.

The first zero-knowledge proofs relied on interaction between the prover and the verifier.
Many cryptographic tasks are carried out off-line though; for instance signing or encrypting
messages. For these tasks it is desirable to have non-interactive zero-knowledge (NIZK) proofs,
where there is no interaction and a proof just consists of a single message from the prover
to the verifier. Unfortunately, only languages in BPP have NIZK proofs in the plain model
without any setup [Ore87,GO94,GK96]. However, Blum, Feldman and Micali [BFM88] intro-
duced NIZK proofs in the common reference string model, where both the prover and verifier

? Supported by Engineering and Physical Sciences Research Council grant number EP/G013829/1.

have access to a common reference string generated in a trusted way. Such NIZK proofs have
many applications, ranging from early chosen ciphertext attack secure public-key cryptosys-
tems [DDN00,Sah01] to recent advanced signature schemes [CGS07,BW06]. For this reason
there has been a lot of research into the underlying assumptions [FLS99,BCNP04,GO07], the
efficiency [Dam92,DDP02,KP98,Gro10], and the security guarantees offered by NIZK proofs
[DP92,Sah01,DDO+02].

NIZK proofs based on standard cryptographic assumptions used to be inefficient and not
useful in practice. To get around this inefficiency, applied cryptographers have relied on the so-
called Fiat-Shamir heuristic for transforming public-coin interactive zero-knowledge proofs into
NIZK arguments by using a cryptographic hash-function to compute the verifier’s challenges.
The Fiat-Shamir heuristic can give very efficient NIZK arguments that are secure in the random
oracle model [BR93], where the cryptographic hash-function is modeled as a random function. It
is for instance possible to use the Fiat-Shamir heuristic to transform sub-linear size interactive
public-coin zero-knowledge arguments [Kil92] into sub-linear size non-interactive zero-knowledge
arguments [Mic00]. Unfortunately, there are several examples of protocols that are secure in
the random oracle model, but do not have any secure standard model instantiation no matter
which hash-function is used [CGH98,CGH04,MRH04,BBP04,Nie02]. Particularly relevant here
is Goldwasser and Kalai’s [GK03] demonstration of a signature scheme built from a public-coin
identification scheme that is secure in the random oracle model but insecure in real life. While
it is possible that the Fiat-Shamir heuristic is secure for “natural” protocols, it is worthwhile to
investigate alternative approaches.

Another way to get around the inefficiency of traditional NIZK proofs is to use non-interactive
designated verifier proofs. In a designated verifier proof, the proof is not publicly verifiable; it
can only be verified by a designated verifier. Damg̊ard, Fazio and Nicolosi [DFN06] gave an
efficient linear size non-interactive designated verifier proof for circuit satisfiability based on an
assumption related to Paillier encryption. Designated verifier proofs suffice for some applications,
for instance Cramer and Shoup’s chosen ciphertext attack secure public-key cryptosystem [CS98].
In many other cases, the lack of public verifiability is problematic though. When there is only
one designated verifier, it is for instance not possible to use them to construct advanced digital
signatures, such as ring signatures and group signatures, since here non-repudiation relies on
public verifiability.

Recent works on NIZK proofs has used bilinear groups to improve efficiency. Groth, Ostrovsky
and Sahai [GOS06b,GOS06a] gave NIZK proofs for circuit satisfiability where the proof consists
of O(|C|) group elements, with |C| being the number of gates in the circuit. Their NIZK proofs
have the property that they can be set up to give either perfect soundness and computational
zero-knowledge, or alternatively computational soundness and perfect zero-knowledge. Works
by Boyen, Waters, Groth and Sahai [BW06,BW07,Gro06,GS08] have explored how to build
efficient NIZK proofs that are directly applicable in bilinear groups instead of going through
circuit satisfiability. In some special cases, for instance in the ring signature of Chandran, Groth
and Sahai [CGS07], these techniques lead to sub-linear size NIZK proofs but in general the
number of group elements in an NIZK proof grows linearly in the size of the statement. Abe and
Fehr [AF07] gave a construction based on commitments instead of encryptions, but since there
is a commitment for each wire they also get a linear growth in the size of the circuit.

Looking at the NP-complete problem of circuit satisfiability, the reason the NIZK proofs grow
linearly in the circuit size is that they encrypt the value of each wire in the circuit. Gentry’s new
fully homomorphic cryptosystem [Gen09] can reduce the NIZK proof to being linear in the size of

the witness: The prover encrypts the inputs to the circuit and uses the homomorphic properties
of the cryptosystem to compute the output of the circuit. The prover then gives NIZK proofs for
the input ciphertexts being valid and the output ciphertext containing 1. Fully homomorphic
encryption only helps when the circuit has a small witness though; if the circuit has a linear
number of input wires the resulting NIZK proof will also be linear in the circuit size.

1.1 Our Contribution

Micali’s CS proofs [Mic00] indicated the possibility of sub-linear size NIZK arguments, but
despite more than a decade of research the Fiat-Shamir heuristic is the only known strategy for
constructing sub-linear size NIZK arguments. Our goal is to introduce a new type of sub-linear
size NIZK arguments where security does not rely on the random oracle model.

We construct NIZK arguments for circuit satisfiability with perfect completeness, computa-
tional soundness and perfect zero-knowledge (see Section 2 for definitions). The NIZK arguments
are short and very efficient to verify, but the prover uses a super-linear number of group oper-
ations. We first give an NIZK argument consisting of a constant number of group elements but
having a long common reference string. We then show that it is possible to reduce the size of
the common reference string at the cost of increasing the size of the NIZK argument making
them simultaneously sub-linear in the circuit size.

The soundness of our NIZK argument relies on the q-computational power Diffie-Hellman
and the q-power knowledge of exponent assumptions (see Section 3). The q-CPDH assumption
is a normal computational intractability assumption but the q-PKE is a so-called knowledge
of exponent assumption. Knowledge of exponent assumptions have been criticized for being
unfalsifiable [Nao03] but the use of a non-standard assumption may be unavoidable since Abe and
Fehr [AF07] have demonstrated that no statistical zero-knowledge NIZK argument for an NP-
complete language can have a “direct black-box” security reduction to a standard cryptographic
assumption unless NP ⊆ P/poly.12

Table 1 gives a quick comparison to other NIZK proofs and arguments for circuit satisfiability,
where k is a security parameter, G stands for the size of a group element, M and E are the costs
of respectively multiplications and exponentiations, and P is the cost of a pairing in a bilinear
group (see Section 3).

Compared to other pairing-based NIZK arguments, our arguments are smaller and faster
to verify. The prover uses a super-linear number of multiplications and the computational cost
may grow beyond a linear number of exponentiations. The public verifiability means that the
NIZK arguments are transferable though; they can be copied and distributed to many different
entities that can do their own independent verification. The prover only pays a one-time cost
for computing the NIZK argument, while all verifiers enjoy the benefits of low transmission
bandwidth and efficient verification.

1 Abe and Fehr do not rule out the existence of statistical NIZK arguments with non-adaptive soundness, where
the adversary chooses the statement oblivously of the common reference string. Since the common reference
string is public it is more natural to define soundness adaptively though; indeed we do not know of any practical
applications of NIZK arguments with non-adaptive soundness.

2 The very assumption that an NIZK argument is sound seems to be unfalsifiable as well since even if an adversary
outputs a false statement and a convincing NIZK argument it may be hard to verify that the statement is false.
Groth, Ostrovsky and Sahai [GOS06b] circumvented this problem by defining co-soundness for languages in
NP ∩ coNP, which is falsifiable since the adversary can produce a coNP-witness certifying that the statement
is false.

CRS size Proof size Prover comp. Verifier comp. Sound ZK Assumption

Groth [Gro10] Õ(|C|) G Õ(|C|) G Õ(|C|) E Õ(|C|) M stat. comp. trapdoor perm.

Groth [Gro10] Õ(|C|) bits Õ(|C|) bits Õ(|C|) M Õ(|C|) M stat. comp. Naccache-Stern

Gentry [Gen09] O(1) G |w|kO(1) G |C|kO(1) M |C|kO(1) M stat. comp. lattice-based
Groth-Ostrovsky-Sahai O(1) G O(|C|) G O(|C|) E O(|C|) P perf. comp. subgroup decision or
[GOS06b,GOS06a] O(1) G O(|C|) G O(|C|) E O(|C|) E comp. perf. decision linear
Abe-Fehr [AF07] O(1) G O(|C|) G O(|C|) E O(|C|) E comp. perf. knowledge of expo.

Groth [Gro09] O(|C|
1
2) G O(|C|

1
2) G O(|C|) M O(|C|) M comp. perf. random oracle

This paper O(|C|2) G O(1) G O(|C|2) M O(|C|) M comp. perf. PKE and CDHP

This paper O(|C|
2
3) G O(|C|

2
3) G O(|C|

4
3) M O(|C|) M comp. perf. PKE and CDHP

Table 1. Comparison of NIZK proofs and arguments.

NIZK arguments based on the Fiat-Shamir heuristic are more efficient than our NIZK argu-
ments. These are interactive zero-knowledge arguments (and interaction seems to help) that rely
on a cryptographic hash-function to compute the verifier’s challenges. The security proofs for
soundness rely on the assumption that the hash-function can be modeled as a source of random
coins though, which seems to imply at least some type of knowledge extraction assumption that
a hash-value can only be obtained if the adversary knows the input beforehand. Furthermore, the
cryptographic hash-function is deterministic and therefore it is clearly false that it is a random
function. In contrast, the q-KPE assumption is as far as we know true. Even though the ran-
dom oracle assumption is false and even though there are examples of the Fiat-Shamir heuristic
leading to insecure arguments [GK03] it may be that a particular NIZK argument based on the
Fiat-Shamir heuristic is sound. However, we believe it is worthwhile to investigate alternatives
to the Fiat-Shamir heuristic.

Perfect Zaps. The common reference string model assumes a trusted setup for generating
common reference strings and making them available to the prover and verifier. In case no
such setup is available3 we can still get a sub-linear size 2-move publicly verifiable witness-
indistinguishable argument where the verifiers first message can be reused many times, a so-
called Zap [DN00], as follows: The verifier generates a common reference string. The prover
verifies that the common reference string is well-formed (our common reference string is not a
random bit-string, but it does have a certain structure that makes it possible to verify that it is
well-formed) and can now make arbitrarily many Zaps using the verifier initial message as the
common reference string. Since our NIZK argument is perfectly zero-knowledge, the Zaps will
be perfectly witness-indistinguishable.

1.2 Outline of Our NIZK Argument

We will construct NIZK arguments for the existence of an input to a binary circuit C making it
output 1. At a loss of a constant factor, we may assume C is built entirely from NAND-gates.
Furthermore, if we label the output wire a we may add a self-loop to the circuit consisting of a
NAND-gate a = ¬(a ∧ b) forcing a to be 1. This reduces the challenge to prove that there is an
assignment of truth-values to the wires that respect all the N = |C| NAND-gates in the circuit.

The NIZK argument relies on length-reducing commitments where we can commit to n
values in a finite field Zp using only a constant number of group elements. The commitment

3 We remark that even if the common reference string is adversarially chosen the sub-linearity of our NIZK
arguments impose an information theoretic upper bound on how much information can be leaked.

scheme should be homomorphic, which means that we can combine two commitments to get a
new comitment containing the entry-wise sum of their values. We will also use non-interactive
arguments consisting of a constant number of group elements for proving the following properties
about committed values:

Entry-wise product: Commitments c, d, v contain values a1, . . . , an, b1, . . . , bn and u1, . . . , un
that satisfy ui = aibi for all i.

Permutation: Commitments c, d contain values a1, . . . , an and b1, . . . , bn that satisfy bi = aρ(i)

for all i, where ρ is a publicly known permutation of n elements.

Let us sketch how homomorphic commitments combined with these two types of non-
interactive arguments give us a constant size NIZK argument for circuit satisfiability when
n = 2N . The prover gets as a witness for the satisfiability of the circuit a1, . . . , aN and b1, . . . , bN
such that ai, bi are the inputs to gate i and all the values are consistent with the wires and re-
spect the NAND-gates. We will use the convention that 0 corresponds to false and 1 corresponds
to true, so if ui is the output of gate i we have 1− ui = aibi.

The prover makes commitments to the 2N -tuples

(a1, . . . , aN , b1, . . . , bN) (b1, . . . , bN , 0, . . . , 0) (u1, . . . , uN , 0, . . . , 0).

The prover gives an entry-wise product argument with both c, d and v being the com-
mitment to (a1, . . . , aN , b1, . . . , bN) to show ai = a2

i and bi = b2i for all i. This shows that
a1, . . . , aN , b1, . . . , bN ∈ {0, 1} are appropriate truth values.

An output of one NAND-gate may be the input of other NAND-gates, which means the cor-
responding values ai1 , . . . , ai` , bj1 , . . . , bjm have to have the same assignment. The prover picks a
permutation ρ that contains cycles i1 → i2 → . . .→ i` → j1 +N → j2 +N → . . .→ jm+N → i1
for all such sets of values that have to be consistent and gives a permutation argument
on the commitment to (a1, . . . , aN , b1, . . . , bN). This shows for each set of values correspond-
ing to the same output wire that ai2 = ai1 , . . . , bj1 = ai` , . . . , bjm = bjm−1 so the values
(a1, . . . , aN , b1, . . . , bN) are consistent with the wiring of the circuit.

The prover uses additional commitments and entry-wise product and permutation arguments
to show that the other committed values (b1, . . . , bN , 0, . . . , 0) and (u1, . . . , uN , 0, . . . , 0) are con-
sistent with the wiring of the circuit and the values (a1, . . . , aN , b1, . . . , bN), we refer to Section
8 for the details.

Finally, the prover uses the entry-wise product argument to show that the entry-wise product
of (a1, . . . , aN , b1, . . . , bN) and (b1, . . . , bN , 0, . . . , 0) is (1−u1, . . . , 1−uN , 0, . . . , 0) so all the values
respect the NAND gates. The latter commitment to (1− u1, . . . , 1− uN , 0, . . . , 0) can easily be
created from the commitment to (u1, . . . , uN , 0, . . . , 0) using the homomorphic property of the
commitment scheme.

This outline shows how to get a constant size NIZK argument for circuit satisfiability, but to
enable the entry-wise product arguments and the permutation arguments the common reference
string has size O(N2) group elements. In Section 9 we reduce the common reference string size
by using commitments to n elements where n < N . With n smaller than 2N we need to give
permutation arguments that span accross multiple commitments though. Using permutation
network techniques [Clo53] we manage to build such large permutations from many smaller
permutations.

The technical contribution of this paper is the construction of an appropriate commitment
scheme with corresponding non-interactive entry-wise product and permutation arguments. The

commitment scheme is a variant of the Pedersen commitment scheme, where the commitment
key is of the form (g, gx, . . . , gx

q
). A commitment to a1, . . . , aq is a single group element computed

as gr
∏q
i=1(gx

i
)ai .

The nice thing about this commitment scheme is that the discrete logarithm is a simple
polynomial r +

∑q
i=1 aix

i. When we pair two commitments with each other we get a product
of two polynomials in the exponent. By taking appropriate linear combinations over products
of polynomials, we can express entry-wise products and permutations as equations over the
coefficients of these polynomials. The q-CPDH assumption then allows us to conclude that these
coefficients are identical and therefore the committed values satisfy an entry-wise multiplication
relationship or a permutation relationship to each other.

When pairing commitments (equivalent to multiplying polynomials in the exponent) there
will be various cross-terms. The role of the non-interactive arguments will be to cancel out these
terms. Usually, a single group element paired with g suffices to cancel out all the cross-terms,
so the non-interactive arguments for entry-wise products and permutations are highly efficient
themselves.

To prove that our NIZK argument is sound, we need to reason about the coefficient of
these polynomials. However, a cheating prover might create a commitment without knowing
an opening of it. This is where the q-PKE assumption comes in handy: the prover gives non-
interactive arguments demonstrating that it “knows” the openings of the commitments. By this
we mean that there is an extractor that given the same input as the prover can reconstruct the
commitments together with the openings of the commitments.

2 Definitions

Let R be an efficiently computable binary relation. For pairs (C,w) ∈ R we call C the statement
and w the witness. Let L be the NP-language consisting of statements with witnesses in R.
When we restrict ourselves to statements of size N , we write respectively LN and RN .

A non-interactive argument for a relation R consists of a common reference string generator
algorithmK, a prover algorithm P and a verifier algorithm V that run in probabilistic polynomial
time. The common reference string generator takes as input a security parameter k and may also
take additional inputs and produces a common reference string σ. In our case, the additional
input to the key generation algorithm may be a value N ∈ N specifying the size of statements
we are interested in. The prover takes as input (σ,C,w) and produces an argument π. The
verifier takes as input (σ,C, π) and outputs 1 if the argument is acceptable and 0 if rejecting
the argument. We call (K,P, V) an argument for R if it has the completeness and soundness
property described below.

Perfect completeness. Completeness captures the notion that an honest prover should be
able to convince an honest verifier if the statement is true. For all adversaries A and N = kO(1)

we have

Pr
[
σ ← K(1k, N); (C,w)← A(σ);π ← P (σ,C,w) : V (σ,C, π) = 1 if (C,w) ∈ RN

]
= 1.

Computational soundness. Soundness captures the notion that it should be infeasible for
an adversary to come up with an accepting argument for a false statement. For all non-uniform
polynomial time adversaries A and N = kO(1) we have

Pr
[
σ ← K(1k, N); (C, π)← A(σ) : C /∈ L and V (σ,C, π) = 1

]
≈ 0.

Perfect witness-indistinguishability. We say a non-interactive argument (K,P, V) is per-
fectly witness-indistinguishable if it is impossible to tell which witness the prover when there
are many possible witnesses. For all stateful interactive adversaries A and N = kO(1) we have

Pr
[
σ ← K(1k, N); (C,w0, w1)← A(σ);π ← P (σ,C,w0) : (C,w0), (C,w1) ∈ RN and A(π) = 1

]
= Pr

[
σ ← K(1k, N); (C,w0, w1)← A(σ);π ← P (σ,C,w1) : (C,w0), (C,w1) ∈ RN and A(π) = 1

]
.

Perfect zero-knowledge. An argument is zero-knowledge if it does not leak any information
besides the truth of the statement. We say a non-interactive argument (K,P, V) is perfect
zero-knowledge if there exists a polynomial time simulator S = (S1, S2) with the following zero-
knowledge property. S1 outputs a simulated common reference string and a simulation trapdoor.
S2 takes the common reference string, the simulation trapdoor and a statement as input and
produces a simulated argument. For all stateful interactive adversaries A and N = kO(1) we
require

Pr
[
σ ← K(1k, N); (C,w)← A(σ);π ← P (σ,C,w) : (C,w) ∈ RN and A(π) = 1

]
= Pr

[
(σ, τ)← S1(1k, N); (C,w)← A(σ);π ← S2(σ, τ, C) : (C,w) ∈ RN and A(π) = 1

]
.

3 Bilinear Groups

Notation. Given two functions f, g : N → [0, 1] we write f(k) ≈ g(k) when |f(k) − g(k)| =
O(k−c) for every constant c > 0. We say that f is negligible when f(k) ≈ 0 and that it is
overwhelming when f(k) ≈ 1.

We write y = A(x; r) when the algorithm A on input x and randomness r, outputs y. We
write y ← A(x) for the process of picking randomness r at random and setting y = A(x; r).
We also write y ← S for sampling y uniformly at random from the set S. We will assume it
is possible to sample uniformly at random from sets such as Zp. We define [n] to be the set
{1, 2, . . . , n}.
Bilinear groups. Let G take a security parameter k written in unary as input and output a
description of a bilinear group (p,G,GT , e)← G(1k) such that

1. p is a k-bit prime.

2. G,GT are cyclic groups of order p.

3. e : G×G is a bilinear map (pairing) such that ∀a, b : e(ga, gb) = e(g, g)ab.

4. If g generates G then e(g, g) generates GT .

5. Membership in G,GT can be efficiently decided, group operations and the pairing e are effi-
ciently computable, generators are efficiently sampleable, and the descriptions of the groups
and group elements each have size O(k) bits.

The security of our NIZK arguments will be based on two new assumptions, which we call
respectively the q-power knowledge of exponent assumption and the q-computational power
Diffie-Hellman assumption.

The q-power knowledge of exponent assumption. The knowledge of exponent (KEA)
assumption introduced by Damg̊ard [Dam91] says that given g, gα it is infeasible to create c, ĉ
so ĉ = cα without knowing a so c = ga and ĉ = (gα)a. Bellare and Palacio [BP04] extended

this to the KEA3 assumption, which says that given g, gx, gα, gαx it is infeasible to create c, ĉ
so ĉ = cα without knowing a0, a1 so c = ga0(gx)a1 and ĉ = (gα)a0(gαx)a1 . This assumption has
been used also in bilinear groups by Abe and Fehr [AF07] who called it the extended knowledge
of exponent assumption.

The q-power knowledge of exponent assumption is a generalization of KEA and KEA3. It
says that given (g, gx, . . . , gx

q
, gα, gαx, . . . , gαx

q
) it is infeasible to create c, ĉ so ĉ = cα without

knowing a0, . . . , aq so c =
∏q
i=0(gx

i
)ai and ĉ =

∏q
i=0(gαx

i
)ai .

We will now give the formal definition of the q-power knowledge of exponent assumption.
Following Abe and Fehr [AF07] we write (y; z) ← (A ‖ XA)(x) when A on input x outputs y
and XA on the same input (including the random tape of A) outputs z.

Definition 1 (q-PKE). The q(k)-power knowledge of exponent assumption holds for G if for
every non-uniform probabilistic polynomial time adversary A there exists a non-uniform proba-
bilistic polynomial time extractor XA so

Pr
[
(p,G,GT , e)← G(1k) ; g ← G \ {1} ; α, x← Z∗p ; σ = (p,G,GT , e, g, g

x, . . . , gx
q
, gα, gαx, . . . , gαx

q
) ;

(c, ĉ ; a0, . . . , aq)← (A ‖ XA)(σ) : ĉ = cα ∧ c 6=
n∏
i=0

gaix
i
]
≈ 0.

We give a heuristic argument for believing in the q-PKE assumption by showing that it holds
in the generic group model in Appendix A.

The q-computational power Diffie-Hellman assumption. The computational Diffie-
Hellman (CDH) assumption says that given g, gβ, gx it is infeasible to compute gβx. The q-
computational power Diffie-Hellman assumption is a generalization of the CDH assumption
that says given (g, gx, . . . , gx

q
, gβ, gβx, . . . , gβx

q
) except for one missing elements gβx

j
, it is hard

to compute the missing element.

Definition 2 (q-CPDH). The q(k)-computational power Diffie-Hellman assumption holds for
G if for all j ∈ {0, . . . , q} and all non-uniform probabilistic polynomial time adversaries A we
have

Pr
[
(p,G,GT , e)← G(1k) ; g ← G \ {1} ; β, x← Z∗p ; y ← (A,XA)(p,G,GT , e, g, g

x, . . . , gx
q
,

gβ, gβx, . . . , gβx
j−1
, gβx

j+1
, . . . , gβx

q
) : y = gβx

j
]
≈ 0.

We give a heuristic argument for believing in the q-CPDH assumption by showing that it holds
in the generic group model in Appendix A.

4 Knowledge Commitment

We will use a variant of the Pedersen commitment scheme in our NIZK proof where we commit to
a1, . . . , aq as c = gr

∏
i∈[q] g

ai
i . In the security proof of our NIZK argument for 3SAT we will need

to extract the committed values a1, . . . , aq; but the commitment scheme itself is perfectly hiding
and does not reveal the committed values. For this reason, we will require the prover to create
a related commitment ĉ = ĝ

∏
i∈[q] ĝ

ai
i and will rely on the q-PKE assumption for extracting the

committed values. We call (c, ĉ) a knowledge commitment, since the prover cannot make a valid
commitment without “knowing” the committed values.

Key generation: Pick gk = (p,G,GT , e) ← G(1k) g ← G \ {1} ; x, α ← Z∗p. The commit-

ment key is ck = (gk, g, g1, . . . , gq, ĝ, ĝ1 . . . , ĝq) = (gk, g, gx, . . . , gx
q
, gα, gαx, . . . , gαx

q
) and

the trapdoor key is tk = x.

Commitment: To commit to a1, . . . , aq pick r ← Zp and compute the knowledge commitment
(c, ĉ) as

c = gr
∏
i∈[q]

gaii ĉ = ĝr
∏
i∈[q]

ĝaii .

Given (c, ĉ) ∈ G2 we can verify that it is well-formed by checking e(g, ĉ) = e(c, ĝ).

Trapdoor commitment: To make a trapdoor commitment sample trapdoor randomness t←
Zp and compute the knowledge commitment (c, ĉ) as c = gt ; ĉ = ĝt.

Trapdoor opening: The trapdoor opening algorithm on messages a1, . . . , aq ∈ Zp returns
the randomizer r = t −

∑
i∈[q] aix

i. The trapdoor opening satisfies c = gr
∏
i∈[q] g

ai
i and

ĉ = ĝr
∏
i∈[q] ĝ

ai
i .

The commitment scheme has properties similar to those of standard Pedersen commitments as
the following theorem shows.

Theorem 1. The commitment scheme is perfectly trapdoor and computationally binding. As-
suming the q-PKE assumption holds, there exists for any non-uniform probabilistic polynomial
time committer A a non-uniform probabilistic polynomial time extractor XA that computes the
contents of the commitment when given the input of A (including any random coins).

Proof. To see that the commitment is perfectly trapdoor and perfectly hiding, consider an
arbitrary q-tuple of messages (a1, . . . , aq). Since g is a generator of G, both the real commitment
algorithm and the trapdoor commitment algorithm generates a random group element c ∈ G and
the other part is given by ĉ = cα. Given c and a1, . . . , aq the randomizer is determined uniquely,
so real commitments and their openings have the same distribution as trapdoor commitments
and trapdoor openings.

To prove that the commitment scheme is binding, suppose a non-uniform probabilistic time
adversary creates two openings (r, a1, . . . , aq) and (s, b1, . . . , bq) of the same commitment, i.e.,

gr
∏
i∈[q] g

ai
i = gs

∏
i∈[q] g

bi
i . By the homomorphic property of the commitment scheme we have

gr−s
∏
i∈[q] g

ai−bi
i = 1, which implies r−s+

∑
i∈[q](ai−bi)xi = 0. By Lemma 1 there is negligible

probability for finding a non-trivial linear combination of 1, x, . . . , xq so we have r = s, a1 =
b1, . . . , aq = bq.

The existence of a non-uniform probabilistic polynomial time knowledge extractor XA that
extract the contents of the knowledge commitment made by a non-uniform probabilistic poly-
nomial time committer A follows directly from the q-PKE assumption. �

4.1 Restriction Argument

Consider a subset S ⊂ [q] and a commitment c. We will need an argument for the opening
r, a1, . . . , aq being such that the indices of non-zero values are restricted to S. In other words,
we need an argument for the commitment being of the form c = gr

∏
i∈S g

ai
i . The argument

will take the form π = hr
∏
i∈S h

ai
i , which intuitively corresponds to an additional argument of

knowledge with respect to a small base (h, {hi}i∈S).

Setup: gk ← G(1k) ; ck ← Kcommit(gk).

Common reference string: Given (ck, S) as input pick at random β ← Z∗p and compute the

common reference string as σ = (h, {hi}i∈S) = (gβ, {gβi }i∈S).

Statement: A valid knowledge commitment (c, ĉ).

Prover’s witness: Opening r, {ai}i∈S so c = gr
∏
i∈S g

ai
i and ĉ = ĝr

∏
i∈S ĝ

ai
i .

Argument: Compute the argument as π = hr
∏
i∈S h

ai
i .

Verification: Output 1 if and only if e(c, h) = e(g, π).

Theorem 2. The restriction argument is perfectly complete and perfectly witness-
indistinguishable. If the q-CPDH assumption holds, all non-uniform probabilistic polynomial
time adversaries have negligible probability of outputting (r, a1, . . . , aq, π) so ai 6= 0 for some
i /∈ S and π is an acceptable restriction argument for the commitment corresponding to the
opening.

Observe that we phrase the soundness of the restriction argument as the inability to find an
opening of the commitment that violates the restriction. Since the commitment scheme is per-
fectly hiding we cannot exclude the existence of openings that violate the restriction. However,
if it holds that it is a knowledge commitment (Theorem 1) we see that the opening we extract
from the committer must respect the restriction.

Proof. Perfect completeness follows from the fact that an honestly generated proof satisfies
π = cβ, which implies that the verification succeeds. Since g, h are generators of G there is for
any commitment c a unique acceptable argument π. Since all valid witnesses result in this unique
acceptable argument, we have perfect witness-indistinguishability.

Remaining is to argue that there is negligible probability of producing an opening
(r, a1, . . . , aq) of a commitment c together with an acceptable proof π, where for some i /∈ S we
have ai 6= 0. Assume for contradiction that A is a non-uniform probabilistic polynomial time
adversary with ε(k) chance of breaking this notion of soundness. We will use it to construct
a non-uniform probabilistic polynomial time algorithm B that breaks the q-CPDH assumption
with probability ε(k)/q when q = poly(k).

Let us pick j ∈ [q] \ S at random and give the q-CPDH challenge (p,G,GT , e, g, g
x, . . . , gx

q
,

gβ, gβx, . . . , gβx
j−1
, gβx

j+1
, . . . , gβx

q
) to B. Now B picks at random α ← Z∗p and hands

(p,G,GT , e, g, g
x, . . . , gx

q
, gα, gαx, . . . , gαx

q
, gβ, {gβxi}i∈S) to A. This looks like a normal com-

mitment key and common reference string, so with probability ε(k) the adversary A returns an
opening (r, a1, . . . , aq) and an accepting argument π, with at least one i /∈ S for which ai 6= 0.
We chose j at random so there is at least 1/q chance for aj 6= 0. Since the argument is accepting

we have e(c, h) = e(g, π), which means e(gr
∏
i∈[q] g

aix
i
, gβ) = e(g, π). By the bilinearity of e

this implies π = grβ
∏
i∈[q] g

aiβx
i
, which in turn means g−ajβx

j
= π−1grβ

∏
i∈[q]\{j} g

aiβx
i
. With

aj 6= 0 we get gβx
j

= (π−1(gβ)r
∏
i∈[q]\{j}(g

βxi)ai)−1/aj , which breaks the q-CPDH challenge. �

5 Common Reference String

We will now describe how to generate the common reference string for our NIZK argument. The
common reference string will consist of a knowledge commitment key ck for q = n2 + 3n − 2
values together with three common reference strings for restriction to the sets

S̃ = {1, 2, . . . , n} S̄ = {(n+ 1), 2(n+ 1), . . . , n(n+ 1)} Ṡ = {` ∈ [q] | ` 6= 0 mod n+ 2}.

The zero-knowledge simulation of the argument will use the same type of common reference
string, and the simulation trapdoor for our NIZK argument will be the trapdoor for the knowl-
edge commitment.

Common Reference String Generation:

On input 1k and n do

1. Generate a bilinear group (p,G,GT , e)← G(1k) and set gk = (p,G,GT , e).

2. Pick g ← G \ {1} ; x, α← Z∗p and compute

ck = (gk, g, g1, . . . , gq, ĝ, ĝ1, . . . , ĝq) = (gk, g, gx, . . . , gx
n2+3n−2

, gα, gαx, . . . , gαx
n2+3n−2

).

3. Generate σ̃ ← Krestrict(ck, S̃) where S̃ = {1, 2, . . . , n}.
4. Generate σ̄ ← Krestrict(ck, S̄) where S̄ = {(n+ 1), 2(n+ 1), . . . , n(n+ 1)}.
5. Generate σ̇ ← Krestrict(ck, Ṡ) where Ṡ = {` ∈ [q] | ` 6= 0 mod n+ 2}.
The common reference string is σ = (ck, σ̃, σ̄, σ̇). The simulation trapdoor is tk = x.

Given a common reference string, it is hard to find a non-trivial linear combination of 1, x, . . . , xq

because we could run a polynomial factorization algorithm in Zp[X] to compute the root x.

Lemma 1. If the q-CPDH assumption holds for G with q = n2+3n−2, a non-uniform probabilis-
tic polynomial time adversary has negligible chance of finding a non-trivial linear combination
(a0, . . . , aq) such that

∑q
i=0 aix

i = 0 given a random common reference string σ.

Proof. Suppose A is a non-uniform probabilistic polynomial time algorithm that when given
a common reference string has ε(k) chance of finding (a0, . . . , aq) such that

∑q
i=0 aix

i = 0.
We will construct an adversary B for the q-CPDH assumption with success probability ε(k). B
on a CPDH-challenge (p,G,GT , e, g, . . . , g

xq , gβ, gβx, . . . , gβx
j−1
, gβx

j+1
, . . . , gβx

q
) will ignore the

latter half and use A to compute x given (p,G,GT , e, g, g1, . . . , gn) = (p,G,GT , e, g, g
x, . . . , gx

q
).

Once we have x, it is of course easy to compute the solution to the q-CPDH problem as y =
gβx

j
= (gβ)x

j
.

B picks at random α̂, β̃, β̄, β̇ ← Z∗p and computes a common reference string as follows

ĝ = gα̂ h̃ = gβ̃ h̄ = gβ̄ ḣ = gβ̇

∀i ∈ [q] : ĝi = gα̂i ∀i ∈ S̃ : h̃i = gβ̃i ∀i ∈ S̄ : h̄i = gβ̄i ∀i ∈ Ṡ : ḣi = gβ̇i

It gives the common reference string to A and since it has the same distribution as a real
common reference string there is probability ε(k) for A returning a non-trivial linear combination
(a0, . . . , aq) so

∑q
i=0 aix

i = 0. Using a polynomial factorization algorithm for Zp[X] we can
efficiently find the up to q roots of the polynomial. It is now easy to try each of them until we
find x so g1 = gx. �

Verifying the common reference string. The common reference string described above
has a particular mathematical structure and we do not know of an extraction procedure that can
generate it from a public string of random bits. However, provided we can verify that (p,G,GT , e)
does describe a bilinear group, it is also possible to verify that σ is a well-formed common
reference string. First, we check that all group elements in σ are non-trivial. This demonstrates

that the secret exponents x, α, β̃, β̄, β̇ are non-zero. Next, we use the pairing operation to verify
the structure of the common reference string. We check

∀i ∈ [q] : e(g, gi+1) = e(g1, gi) ∀i ∈ [q] : e(g, ĝi) = e(ĝ, gi)

∀i ∈ S̃ : e(g, h̃i) = e(h̃, gi) ∀i ∈ S̄ : e(g, h̄i) = e(h̄, gi) ∀i ∈ Ṡ : e(g, ḣi) = e(ḣ, gi).

By verifying the common reference string, the prover can be assured that the argument
is perfectly witness-indistinguishable. This means that even if the common reference string is
generated by an untrusted source such as the verifier, we get a 2-move arguments with perfect
witness-indistinguishability, also known as Zaps [DN00]. The verifier in the first move sends
a common reference string and the prover then can give many publicly verifiable arguments
(second moves) for different statements using the same common reference string.

6 Product Argument

Consider three commitments

c = gr
∏
i∈[n]

gaii d = gs
∏
j∈[n]

g
bj
j(n+1) v = gt

∏
i∈[n]

guii ∀i ∈ [n] : ui = aibi.

With the corresponding restriction arguments, ĉ, c̃, d̂, d̄, v̂, ṽ we can assume the committer knows
openings to values a1, . . . , an, b1, . . . , bn and u1, . . . , un. We will give an argument (π, π̂, π̇) con-
sisting of three group elements for the committed values satisfying u1 = a1b1, . . . , un = anbn.

In order to explain the intuition in the argument, let us consider the following toy example

c =
∏
i∈[n] g

ai
i and d =

∏
j∈[n] g

bj
j(n+1), where we want to show a1b1 = 0, . . . , anbn = 0. The

discrete logarithms of the two commitments are
∑

i∈[n] aix
i and

∑
j∈[n] bjx

j(n+1) and the discrete
logarithm of e(c, d) is∑
i∈[n]

aix
i

·
∑
j∈[n]

bjx
j(n+1)

 =
∑
i∈[n]

∑
j∈[n]

aibjx
j(n+1)+i =

∑
i∈[n]

aibix
i(n+2)+

∑
i∈[n]

∑
j∈[n]\{i}

aibjx
j(n+1)+i.

In the final sum, the left term contains the coefficients a1b1, . . . , anbn that are supposed to be 0,
however, the right term complicates matters. The argument π will be constructed such that it
can be used to cancel out the latter term.

Notice that the left term isolates the coefficients of xn+2, . . . , xn(n+2), while the right term
does not contain any such coefficients. By giving an appropriate restriction argument, the prover
can guarantee that she only cancels out the right term without interfering with the left term

containing xn+2, . . . , xn(n+2). The prover computes π =
∏
i∈[n]

∏
j∈[n]\{i} g

aibj
j(n+1)+i and gives

corresponding π̂, π̇ values demonstrating that it knows an opening (z, {z`}`∈Ṡ) of π restricted to

Ṡ. The verifier will check
e(c, d) = e(g, π).

Let us now argue that we have soundness: given π, π̂, π̇ such that e(c, d) = e(g, π) the verifier
can be assured that a1b1 = 0, . . . , anbn = 0. Taking discrete logarithms, the verification equation
tells us that ∑

i∈[n]

aibix
i(n+2) +

∑
i∈[n]

∑
j∈[n]\{i}

aibjx
j(n+1)+i = z +

∑
`∈Ṡ

z`x
`.

Recall, Ṡ = {` ∈ [n2 + 3n − 2] | ` 6= 0 mod n + 2} so the argument π will not contain any
coefficients of the form xn+2, . . . , xn(n+2). This means the coefficients of xn+2, . . . , xn(n+2) are
a1b1, . . . , anbn. If there is an i such that aibi 6= 0, then we have a non-trivial polynomial equation
in x. By Lemma 1 this would allow us to recover x and breaking the q-PKE assumption.

In the general case we want to give an argument for aibi = ui instead of just aibi = 0.
However, if we evaluate e(v,

∏
j∈[n] gj(n+1)) we can view the latter as a commitment to (1, 1, . . . , 1)

and we will get their products u1 · 1, . . . , un · 1 as coefficients of xn+2, . . . , xn(n+2). If u1 =
a1b1, . . . , un = anbn the two pairings e(c, d) and e(v,

∏
j∈[n] gj(n+1)) therefore have the same

coefficients of xn+2, . . . , xn(n+2) and otherwise the coefficients are different. As in the toy example
above, we may choose π such that it cancels out all the other terms. Due to the restriction to
Ṡ the argument will not have any xn+2, . . . , xn(n+2) terms and we therefore get soundness. In
the general case, the commitments also have randomizers and we will choose π such that it also
cancels out these terms. We give the full argument below.

Statement: Commitments c, d, v ∈ G.
Prover’s witness: Openings r, a1, . . . , an and s, b1, . . . , bn and t, u1, . . . , un so

c = gr
∏
i∈[n]

gaii and d = gs
∏
j∈[n]

g
bj
j(n+1) and v = gt

∏
i∈[n]

guii and ∀i ∈ [n] : ui = aibi.

Argument: Compute the argument (π, π̂, π̇) as

π = grs
∏
i∈[n]

gaisi
∏
j∈[n]

g
bjr−t
j(n+1)

∏
i∈[n]

∏
j∈[n]\{i}

g
aibj−ui
j(n+1)+i

π̂ = ĝrs
∏
i∈[n]

ĝaisi
∏
j∈[n]

ĝ
bjr−t
j(n+1)

∏
i∈[n]

∏
j∈[n]\{i}

ĝ
aibj−ui
j(n+1)+i

π̇ = ḣrs
∏
i∈[n]

ḣaisi
∏
j∈[n]

ḣ
bjr−t
j(n+1)

∏
i∈[n]

∏
j∈[n]\{i}

ḣ
aibj−ui
j(n+1)+i

Verification: Output 1 if and only if

e(g, π̂) = e(π, ĝ) ∧ e(g, π̇) = e(π, ḣ) ∧ e(c, d) = e(v,
∏
j∈[n]

gj(n+1))e(g, π).

Theorem 3. The product argument has perfect completeness and perfect witness-
indistinguishability. If the q-CPDH assumption holds, then a non-uniform probabilistic
polynomial time adversary has negligible chance of outputting commitments (c, d, v) and an
accepting argument π with corresponding openings of the commitments and the argument such
that for some i ∈ [n] we have aibi 6= ui.

Proof. Straightforward computation shows that the argument is perfectly complete. To see that
the argument is perfectly witness-indistinguishable, observe that given c, d, v there is exactly
one acceptable argument π satisfying the verification equation. Given π the other parts π̂ and
π̇ are also determined uniquely by the verification equations because ĝ and ḣ are generators of
G. This means that any valid opening of c, d, v with a1b1 = u1, . . . , anbn = un will result in the
same argument (π, π̂, π̇).

We will now prove that the argument satisfies the soundness condition given in the theorem.
Suppose there is a non-uniform probabilistic polynomial time adversary A that has more than

negligible chance of finding openings r, a1, . . . , an, s, b1, . . . , bn, t, u1, . . . , un and z, {z`}`∈Ṡ such
that

c = gr
∏
i∈[n]

gaii d = gs
∏
j∈[n]

g
bj
j(n+1) v = gt

∏
i∈[n]

guii π = gz
∏
`∈Ṡ

gz`` ,

∃i ∈ [n] : aibi 6= ui ∧ e(c, d) = e(v,
∏
j∈[n]

gj(n+1))e(g, π).

Then we have

loge(g,g) e(c, d) = (r +
∑
i∈[n]

aix
i)(s+

∑
j∈[n]

bjx
j(n+1))

= rs+ s
∑
i∈[n]

aix
i + r

∑
j∈[n]

bjx
j(n+1) +

∑
i∈[n]

∑
j∈[n]

aibjx
j(n+1)+i

loge(g,g) e(v,
∏
j∈[n]

gj(n+1)) = (t+
∑
i∈[n]

uix
i)(

∑
j∈[n]

xj(n+1)) = t
∑
j∈[n]

xj(n+1) +
∑
i∈[n]

∑
j∈[n]

uix
j(n+1)+i

loge(g,g) e(g, π) = z +
∑
`∈Ṡ

z`x
z`

Since e(c, d) = e(v,
∏
j∈[n] gj(n+1))e(g, π) the discrete logarithms satisfy

rs+ s
∑
i∈[n]

aix
i + r

∑
j∈[n]

bjx
j(n+1) +

∑
i∈[n]

∑
j∈[n]

aibjx
j(n+1)+i

= t
∑
j∈[n]

xj(n+1) +
∑
i∈[n]

∑
j∈[n]

uix
j(n+1)+i + z +

∑
`∈Ṡ

z`x
`.

Recall that Ṡ does not contain n+ 2, 2(n+ 2), . . . , n(n+ 2). We therefore see that for all i ∈ [n]
the coefficients of xi(n+2) on each side of the equality are respectively aibi and ui. If aibi 6= ui for
some i ∈ [n] this gives us a non-trivial linear combination of 1, x, . . . , xn

2+3n−2 and by Lemma
1 a breach of the q-CPDH assumption. �

The product argument has two commitments with restriction to S̃ and one commitment
restricted to S̄. It is quite easy to translate commitments back and forth between S̃ and S̄
though. If we have two commitments v and d restricted to respectively S̃ and S̄, we can give
a product argument for the values in v being the product of the values in c =

∏
i∈[n] gi and d.

Since c is a commitment to (1, . . . , 1) this proves that v and d contain the same values.

The product argument makes it possible to prove that the committed values in a commitment
c are bits. If we give a product argument for c containing the entry-wise product of the values
in c and d, where d contains the same values as c, then we have that the values satisfy ai = a2

i ,
which implies ai ∈ {0, 1}.

7 Permutation Argument

Consider two commitments and a permutation

c = gr
∏
i∈[n]

gaii d = gs
∏
i∈[n]

gbii ρ ∈ Sn ∀i ∈ [n] : bi = aρ(i).

We will now give an argument for the committed values satisfying bi = aρ(i), where ρ ∈ Sn is a
publicly known permutation.

The idea behind the permutation argument is to show∑
i∈[n]

aix
i(n+2) =

∑
i∈[n]

bix
ρ(i)(n+2).

By Lemma 1 this implies bi = aρ(i) for all i ∈ [n].

To get the desired linear combination we compute e(c,
∏
j∈[n] gj(n+1)) and

e(d,
∏
j∈[n] gρ(j)(n+2)−j). They have discrete logarithms

(r +
∑
i∈[n]

aix
i)

∑
j∈[n]

xj(n+1) = r
∑
j∈[n]

xj(n+1) +
∑
i∈[n]

aix
i(n+2) +

∑
i∈[n]

∑
j∈[n]\{i}

aix
j(n+1)+i

(s+
∑
i∈[n]

bix
i)

∑
j∈[n]

xρ(j)(n+2)−j = s
∑
j∈[n]

xρ(j)(n+2)−j +
∑
i∈[n]

bix
ρ(i)(n+2) +

∑
i∈[n]

∑
j∈[n]\{i}

bix
ρ(j)(n+2)+i−j

We have the desired sums
∑

i∈[n] aix
i(n+2) and

∑
i∈[n] bix

ρ(i)(n+2) but due to the extra terms it
is not the case that e(c,

∏
j∈[n] gj(n+1)) = e(d,

∏
j∈[n] gρ(j)(n+2)−j).

The prover will construct an argument π that cancels out the extra terms and the verifier
will check that

e(c,
∏
j∈[n]

gj(n+1)) = e(d,
∏
j∈[n]

gρ(j)(n+2)−j)e(g, π).

The prover also gives a restriction argument π̂, π̇ such that the verifier is guaranteed that π does
not contain any xn+2, . . . , xn(n+2) terms. Soundness now follows from the verification equation
giving us

∑
i∈[n] aix

i(n+2) =
∑

i∈[n] bix
ρ(i)(n+2) when π is free of xn+2, . . . , xn(n+2) terms.

Statement: Commitments c, d ∈ G and permutation ρ ∈ Sn.

Prover’s witness: Openings r, a1, . . . , an ∈ Zp and s, b1, . . . , bn ∈ Zp so

c = gr
∏
i∈[n]

gaii and d = gs
∏
i∈[n]

gbii and ∀i ∈ [n] : bi = aρ(i).

Argument: Compute the argument as

π =
∏
j∈[n]

grj(n+1)g
−s
ρ(j)(n+2)−j

∏
i∈[n]

∏
j∈[n]\{i}

gaij(n+1)+ig
−bi
ρ(j)(n+2)+i−j

π̂ =
∏
j∈[n]

ĝrj(n+1)ĝ
−s
ρ(j)(n+2)−j

∏
i∈[n]

∏
j∈[n]\{i}

ĝaij(n+1)+iĝ
−bi
ρ(j)(n+2)+i−j

π̇ =
∏
j∈[n]

ḣrj(n+1)ḣ
−s
ρ(j)(n+2)−j

∏
i∈[n]

∏
j∈[n]\{i}

ḣaij(n+1)+iḣ
−bi
ρ(j)(n+2)+i−j

Verification: Output 1 if and only if

e(g, π̂) = e(π, ĝ) ∧ e(g, π̇) = e(π, ḣ) ∧ e(c,
∏
j∈[n]

gj(n+1)) = e(d,
∏
j∈[n]

gρ(j)(n+2)−j)e(g, π).

Theorem 4. The permutation argument has perfect completeness and perfect witness-
indistinguishability. If the q-CPDH assumption holds, a non-uniform probabilistic polynomial
time adversary has negligible chance of outputting a permutation ρ, commitments (c, d) and an
acceptable argument (π, π̂, π̇) with corresponding openings of the commitments and the argument
such that for some i ∈ [n] we have bi 6= aρ(i).

Proof. Straightforward computation shows that the argument has perfect completeness. To see
that the argument is perfectly witness-indistinguishable, observe that given c, d, ρ there is a
unique acceptable argument π satisfying the verification equation. Given π the other parts π̂
and π̇ are also determined uniquely by the verification equations since ĝ and ḣ are generators
for G. Any witness in the form of openings of c and d with bi = aρ(i) for all i ∈ [n] therefore
gives the same unique argument (π, π̂, π̇) so we have perfect witness-indistinguishability.

Consider now a non-uniform probabilistic polynomial time adversary A that outputs ρ ∈ Sn
and r, a1, . . . , an, s, b1, . . . , bn and z, {z`}`∈Ṡ such that

c = gr
∏
i∈[n]

gaii d = gs
∏
i∈[n]

gbii π = gz
∏
`∈Ṡ

gz`` e(c,
∏
j∈[n]

gj(n+1)) = e(d,
∏
j∈[n]

gρ(j)(n+2)−j)e(g, π).

Computing the discrete logarithms of the verification equation we get

loge(g,g) e(c,
∏
j∈[n]

gj(n+1)) = (r +
∑
i∈[n]

aix
i)(

∑
j∈[n]

xj(n+1)) = r
∑
j∈[n]

xj(n+1) +
∑
i∈[n]

∑
j∈[n]

aix
j(n+1)+i

loge(g,g) e(d,
∏
j∈[n]

gρ(j)(n+2)−j) = (s+
∑
i∈[n]

bix
i)(

∑
j∈[n]

xρ(j)(n+2)−j)

= s
∑
j∈[n]

xρ(j)(n+2)−j +
∑
i∈[n]

∑
j∈[n]

bix
ρ(j)(n+2)+i−j

loge(g,g) e(g, π) = z +
∑
`∈Ṡ

z`x
`

The verification equation e(c,
∏
j∈[n] gj(n+1)) = e(d,

∏
j∈[n] gρ(j)(n+2)−j)e(g, π) therefore gives us

r
∑
j∈[n]

xj(n+1) +
∑
i∈[n]

∑
j∈[n]

aix
j(n+1)+i

= s
∑
j∈[n]

xρ(j)(n+2)−j +
∑
i∈[n]

∑
j∈[n]

bix
ρ(j)(n+2)+i−j + z +

∑
`∈Ṡ

z`x
`.

Recall that Ṡ does not contain n + 2, 2(n + 2), . . . , n(n + 2). This means π does not have any
xn+2, . . . , xn(n+2) terms. Looking at the term xρ(i)(n+2) in the polynomial equation the coefficients
on each side of the equality are respectively aρ(i) and bi. Lemma 1 therefore gives us negligible
probability for bi 6= aρ(i) for some i ∈ [n]. �

8 Constant Size NIZK Argument for Circuit Satisfiability

We will now give an NIZK argument for the satisfiability of a binary circuit C, which consists
of a constant number of group elements but has a large common reference string. Without loss
of generality we assume that the circuit consists of NAND-gates. Let a be the output wire of

the circuit. By adding an extra self-looping NAND gate a = ¬(a ∧ b) we force a to be true, so
we can reduce the satisfiability problem to demonstrating that there is a truth-value assignment
to the wires such that C is internally consistent with all the NAND-gates. We now give the full
NIZK argument for circuit satisfiability that was outlined in the introduction.

Common reference string: Generate common reference string σ = (ck, σ̃, σ̄, σ̇) with n = 2N .
Statement: A circuit C with N NAND-gates, where we want to prove the wires can be assigned

values such that the circuit is internally consistent.
Witness: 2N input values a1, . . . , aN , b1, . . . , bN ∈ {0, 1} for the N gates that are consistent

with the wires in the circuit and respect the NAND-gates. Define u1, . . . , uN to be values of
the output wires and let r1, . . . , rN be the remaining values in (a1, . . . , aN , b1, . . . , bN) (either
inputs to the circuit or duplicates of NAND-gate output wires appearing multiple times as
inputs to other NAND-gates).

Argument:
1. Create restricted knowledge commitment (ca‖b, ĉa‖b, c̃a‖b) to (a1, . . . , aN , b1, . . . , bN).

2. Create restricted knowledge commitment (da‖b, d̂a‖b, d̄a‖b) to (a1, . . . , aN , b1, . . . , bN).
3. Create restricted knowledge commitment (cb‖a, ĉb‖a, c̃b‖a) to (b1, . . . , bN , a1, . . . , aN).
4. Create restricted knowledge commitment (cb‖0, ĉb‖0, c̃b‖0) to (b1, . . . , bN , 0, . . . , 0).
5. Create restricted knowledge commitment (cu‖r, ĉu‖r, c̃u‖r) to (u1, . . . , uN , r1, . . . , rN).
6. Create restricted knowledge commitment (cu‖0, ĉu‖0, c̃u‖0) to (u1, . . . , uN , 0, . . . , 0).
7. Show that ca‖b and da‖b contain the same values by giving a product argument for

ca‖b containing the entry-wise product of the values in
∏2N
i=1 gi (a commitment to

(1, . . . , 1, 1, . . . , 1)) and da‖b.
8. Show that a1, . . . , aN , b1, . . . , bN ∈ {0, 1} by giving a product argument for ca‖b containing

the entry-wise product of the values in ca‖b and da‖b.
9. Show that the values are internally consistent with the wires. The values
ai1 , . . . , ai` , bj1 , . . . , bjm may for instance all correspond to the same wire. Pick a permu-
tation ρ ∈ S2N such that it contains cycles of the form i1 → i2 → . . .→ i` → j1 +N →
j2 +N → . . .→ jm+N → i1 for all sets of values corresponding to the same wire. Give a
permutation argument for ca‖b containing the ρ-permutation of the values in ca‖b. For each
set corresponding to the same wire, this shows ai2 = ai1 , . . . , bj1 = ai` , . . . , bjm = bjm−1

so the values must be the same.
10. Give a permutation argument for cu‖r and ca‖b showing that the outputs values

(u1, . . . , un) are consistent with the input values (a1, . . . , aN , b1, . . . , bN). (The (r1, . . . , rN)
values are the remaining N values in (a1, . . . , aN , b1, . . . , bN) that correspond to duplicates
of an output wire or input wires to the circuit.)

11. Give a permutation argument for cb‖a containing the swap of the values in ca‖b.
12. Give a product argument for cb‖0 containing the entry-wise product of the values in cb‖a

and
∏N
j=1 gj(n+1) (a commitment to (1, . . . , 1, 0, . . . , 0)).

13. Give a product argument for cu‖0 containing the entry-wise product of the values in cu‖r
and

∏N
j=1 gj(n+1) (a commitment to (1, . . . , 1, 0, . . . , 0)).

14. Show that the NAND-gates are respected by giving a product argument for c−1
u‖0

∏N
i=1 gi

(a commitment to (1−u1, . . . , 1−uN , 0, . . . , 0)) containing the entry-wise product of the
values in cb‖0 and da‖b.

The argument consists of the 6 knowledge commitments with corresponding restriction ar-
guments, the 5 product arguments and the 3 permutation arguments given above. The total
size is 42 group elements.

Verification: Accept the argument if and only if the 6 knowledge commitments are well-formed,
their corresponding restriction arguments are acceptable, the 5 product arguments are ac-
ceptable and the 3 permutation arguments are acceptable.

Theorem 5. The NIZK argument for circuit satisfiability is perfectly complete and perfectly
zero-knowledge. If the q-PKE and q-CPDH assumptions hold with q = (4N2 + 6N − 2), then the
NIZK argument is computationally sound.

Proof. Perfect completeness follows from the perfect completeness of the restriction, product and
permutation arguments.

The zero-knowledge simulator works as follows. The common reference string is generated
correctly, but the simulation trapdoor x makes it possible to create trapdoor commitments that
can be opened to any set of values. Arguments are simulated by creating trapdoor commit-
ments ca‖b, da‖b, cb‖a, cb‖0, cu‖r, cu‖0. Since trapdoor commitments are the same as commitments
to (0, . . . , 0, 0, . . . , 0) we can give corresponding knowledge and restriction arguments. By trap-
door opening to ai = 1, bi = 1, ui = 1, ri = 1 for all i ∈ [N] the simulator can give the first
7 product and permutation arguments. By trapdoor opening to ai = 1, bi = 1, ui = 0 for all
i ∈ [N], it can give the last product argument.

Let us now argue this perfectly simulates a real argument. Consider a hybrid between a
real NIZK argument and a simulated NIZK argument, where we make trapdoor commitments
but open them to a real witness (a1, . . . , aN , b1, . . . , bN) when making the product and permu-
tation arguments. Since the commitments are perfectly trapdoor the hybrid is perfectly indis-
tinguishable from a real NIZK argument. At the same time, since the arguments are perfectly
witness-indistinguishable the hybrid and the simulated NIZK argument are also perfectly indis-
tinguishable.

It remains to show that the argument is sound. Consider a non-uniform probabilistic poly-
nomial time adversary A that creates a circuit C and an accepting NIZK argument π. By the
q-PKE assumption, this implies the existence of a non-uniform probabilistic polynomial time
extractor XA that running on the same input extracts openings of the commitments and the
arguments.

The restriction arguments give us that by the q-CPDH assumption the extracted openings
are restricted to respectively S̃, S̄ and Ṡ. The product and permutation arguments now give us
by the q-CPDH assumption that the openings satisfy the corresponding relations between the
committed values.

By the two first arguments this implies the extracted values a1, . . . , aN , b1, . . . , bN ∈
{0, 1}. The third argument shows that the values are consistent with the wires. The
fourth argument shows that the output wires (u1, . . . , uN) have the values corresponding to
(a1, . . . , aN , b1, . . . , bN). The following four arguments show that for all i ∈ [N] : 1 − ui = aibi,
which means the values respect the NAND-gates. Since the values are consistent with the wires
and respect the NAND-gates, the circuit is satisfiable. �

Arithmetic circuits. It is possible to adjust our NIZK argument to handle arithmetic circuits
consisting of addition and multiplications gates over Zp. The commitment scheme is homomor-
phic so if we multiply two commitments we get the sum of their values, which can be used to
handle the addition gates. The multiplication gates can be handled with our product arguments.

9 Reducing the Common Reference String

In the last section, we constructed constant size NIZK arguments. The common reference string,
however, grows quadratically in the size of the circuit. If the NIZK argument is only used a few
times the cost of setting up the common reference string may be prohibitive. In this section,
we will outline how to reduce the size of the common reference string in return for increasing
the size of the argument. If the circuit has 2N = nd wires for some constant d ≥ 1 we can get
a common reference string with O(n2) group elements and an NIZK argument with O(nd−1)
group elements. If we choose d = 3, the combined size of the CRS and the NIZK argument is
O(N2/3) group elements making both components sub-linear in the circuit size.

The intuition is that we can reduce the common reference string if we accept that each
commitment holds fewer values. If we have a circuit with nd wires and a common reference
string with q = n2 + 3n− 2 = O(n2), the set S̃ will permit the commitment of n elements at a
time. Each commitment will still be a constant number of group elements, but now we will need
nd−1 commitments to commit to all the 2N = nd input values to the gates. The product and
permutation arguments are also of constant size, but they only work on commitments to n values.
If we look at our NIZK argument, the product arguments can just be used on each of the nd−1

triples of commitments containing n values each so there is no problem here. The permutation
argument is not useful though, because we need to permute 2N = nd committed values spread
across nd−1 commitments. The goal in this section is to build a permutation argument for two
nd−1-tuples of commitments to a total of 2N = nd values each. The permutation argument will
consist of O(nd−1) group elements and use the existing CRS consisting of O(n2) group elements.

9.1 Permutation Argument Spanning Multiple Commitments

Consider two sets of n commitments c1, . . . , cn, d1, . . . , dn to values a11, . . . , ann and b11, . . . , bnn.
We will use a Clos-network [Clo53] to give an argument for the two sets of committed values
being permutations of each other for some publicly known permutation ρ ∈ Sn2 . The idea in a
Clos network is to build large permutations from smaller permutations. Consider a permutation
ρ ∈ Sn2 . First we divide the elements into n blocks of n elements and permute the elements
within each block. Next, we distribute the elements in each block evenly on n other blocks
giving us a new set of n blocks each containing one element from each of the previous blocks.
We permute the elements in each block again. Once again, we distribute the elements in each
block evenly on n new blocks. Finally, we permute the elements within the last blocks to get the
elements permuted in the desired order. The permutations in the Clos network vary depending
on ρ, whereas the distributions between blocks are fixed and independent of ρ.

To give a permutation argument for {ci}i∈[n], {d}i∈[n] containing the same values permuted
according to ρ ∈ Sn2 the prover builds a Clos-network for the permutation ρ. She constructs 4 sets
of n intermediate commitments {c′i}i∈[n], {vi}i∈[n], {v′i}i∈[n], {d′i}i∈[n] together with arguments of
knowledge and restriction arguments. Each commitment contains a block of n values in the
middle stages of the Clos network. She uses the permutation argument from Section 7 to show
that for all i ∈ [n] the pairs of commitments (ci, c

′
i), (di, d

′
i) and (vi, v

′
i) contain the same elements

in permuted order as dictated by ρ ∈ Sn2 . The remaining problem is to give an argument for
having dispersed the values between {c′i}i∈[n] and {vj}j∈[n] such that for each c′i the values
have been dispersed to n different vj ’s and to give a dispersion argument for having spread
the values in {v′i}i∈[n] to {d′j}j∈[n] such that for each v′i the n committed values have been
dispersed to n different d′js. We present a dispersion argument in Section 9.2, which uses the

existing CRS consisting of O(n2) group elements and has an argument size of O(n) group
elements. Counting the cost of all the commitments, within-block permutation arguments and
the dispersion arguments, we get a total size of O(n) group elements for proving that two sets of
n commitments to n values each have been permuted according to a publicly known permutation
ρ ∈ Sn2 .

Once we have a permutation argument for n2 values spread over n commitments, we can
recursively get permutation arguments for larger permutations. For any constant d the cost of
a permutation argument for nd elements spread over two sets of nd−1 commitments is O(nd−1)
group elements.

9.2 Dispersion Argument

Consider a matrix of the form 
a11 a12 · · · a1n

a21 a22 · · · a2n
...

...
. . .

...
an1 an2 · · · ann

 .

We can view commitments c1, . . . , cn given by cj = grj
∏
i∈[n] g

aij
i as commitments to the columns

of the matrix. Similarly, we can view d1, . . . , dn given by di = gsi
∏
i∈[n] g

aij
j(n+1) as commitments

to the rows of the matrix. We give an argument for demonstrating that c1, . . . , cn and d1, . . . , dn
contain respectively the columns and the rows of the same n × n matrix. This means that for
each cj the n committed values have been distributed to n different commitments d1, . . . , dn.

To get some intuition for the construction consider first the simple case where all the ran-
domizers are 0. We then have ∏

j∈[n]

e(cj , gj(n+1)) =
∏
i∈[n]

(gi, di).

Taking discrete logarithms on both sides of the equation we get∑
j∈[n]

∑
i∈[n]

aijx
j(n+1)+i =

∑
i∈[n]

∑
j∈[n]

bijx
j(n+1)+i,

which by Lemma 1 implies aij = bij for all i, j ∈ [n]. Due to the randomizers this verifica-
tion equation will not hold in general though. The prover therefore constructs an argument
(πL, πR, π̂L, π̂R, π̄L, π̃R) consisting of six group elements such that the cross-terms arising from
the randomizers cancel out.

Statement: Commitments c1, . . . , cn, d1, . . . , dn ∈ G.

Prover’s witness: Openings r1, . . . , rn, a11, . . . , ann, s1, . . . , sn, b11, . . . , bnn ∈ Zp so

∀j ∈ [n] : cj = grj
∏
i∈[n]

g
aij
i ∀i ∈ [n] : di = gsi

∏
j∈[n]

g
bij
j(n+1) ∀i, j ∈ [n] : aij = bij .

Argument: Pick t← Zp at random and compute the argument (πL, πR, π̂L, π̂R, π̄L, π̃R) as

πL = gt
∏
j∈[n]

g
−rj
j(n+1) πR = gt

∏
i∈[n]

g−sii

π̂L = ĝt
∏
j∈[n]

ĝ
−rj
j(n+1) π̂R = ĝt

∏
i∈[n]

ĝ−sii

π̄L = h̄t
∏
j∈[n]

h̄
−rj
j(n+1) π̃R = h̃t

∏
i∈[n]

h̃−sii

Verification: Output 1 if and only if

e(g, π̂R) = e(πR, ĝ) e(g, π̃R) = e(πR, h̃) e(g, π̂L) = e(πL, ĝ) e(g, π̄L) = e(πL, h̄)

e(g, πL)
∏
j∈[n]

e(cj , gj(n+1)) = e(g, πR)
∏
i∈[n]

e(gi, di).

Theorem 6. The dispersion argument is perfectly complete and perfectly witness-
indistinguishable. If the q-CPDH assumption holds, a non-uniform probabilistic polynomial
time adversary has negligible chance of producing commitments c1, . . . , cn, d1, . . . , dn and an
accepting argument (πL, πR, π̂L, π̂R, π̄L, π̃R) with corresponding openings of the commitments
and the argument such that c1, . . . , cn and d1, . . . , dn are commitments to two different matrices.

Proof. Perfect completeness follows by straightforward computation. For perfect witness-
indistinguishability, observe that the gt factor makes πL uniformly random in G no matter
what the prover’s witness is. Given πL the other parts of the argument πR, π̂L, π̂R, π̄L, π̃R are de-
termined uniquely from the verification equations. All openings with identical matrices therefore
lead to arguments with the same probability distribution so we have perfect witness indistin-
guishability.

Consider now a non-uniform probabilistic polynomial time adversary that outputs
r1, . . . , rn, a11, . . . , ann, s1, . . . , sn, b11, . . . , bnn, y, y1, . . . , yn, z, z1, . . . , zn such that if we define

cj = grj
∏
i∈[n]

g
aij
i di = gsi

∏
j∈[n]

g
bij
j(n+1) πL = gy

∏
j∈n]

g
yj
j(n+1) πR = gz

∏
i∈[n]

gzii

then we have

e(g, πL)
∏
j∈[n]

e(cj , gj(n+1)) = e(g, πR)
∏
i∈[n]

e(gi, di).

Taking the discrete logarithm with respect to e(g, g) on both sides of the equation we get

y +
∑
j∈[n]

yjx
j(n+1) +

∑
j∈[n]

rjx
j(n+1) +

∑
j∈[n]

∑
i∈[n]

aijx
j(n+1)+i

= z +
∑
i∈[n]

zix
i +

∑
i∈[n]

six
i +

∑
i∈[n]

∑
j∈[n]

bijx
j(n+1)+i

For all i, j ∈ [n] the coefficients of xj(n+1)+i on each side of the equality are respectively aij and
bij . By Lemma 1 the adversary will have negligible success probability unless aij = bij for all
i, j ∈ [n]. �

10 Conclusion

We have constructed a pairing-based NIZK argument for circuit satisfiability, which is the first
sub-linear size NIZK argument for circuit satisfiability that does not rely on the random oracle
model. The argument has perfect completeness and perfect zero-knowledge and is computation-
ally sound assuming the q-PKE and the q-CPDH assumptions hold. The size of the common
reference string is O(n2) group elements and the size of the NIZK argument is O(nd−1) group
elements for circuits of size |C| = 1

2n
d, where d ∈ N is a constant. With d = 1 we minimize the

size of the NIZK argument to a constant number of group elements. With d = 3 we minimize
the combined size of the common reference string and the NIZK argument to O(|C|

2
3) group

elements each.

11 Acknowledgment

We would like to thank Amit Sahai for helpful comments and Craig Gentry for a correction of
an earlier version of the paper.

References

[AF07] Masayuki Abe and Serge Fehr. Perfect NIZK with adaptive soundness. In TCC, volume 4392 of Lecture
Notes in Computer Science, pages 118–136, 2007.

[BBP04] Mihir Bellare, Alexandra Boldyreva, and Adriana Palacio. An uninstantiable random-oracle-model
scheme for a hybrid encryption problem. In EUROCRYPT, volume 3027 of Lecture Notes in Computer
Science, pages 171–188, 2004.

[BCNP04] Boaz Barak, Ran Canetti, Jesper Buus Nielsen, and Rafael Pass. Universally composable protocols
with relaxed set-up assumptions. In FOCS, pages 186–195, 2004.

[BFM88] Manuel Blum, Paul Feldman, and Silvio Micali. Non-interactive zero-knowledge and its applications.
In STOC, pages 103–112, 1988.

[BP04] Mihir Bellare and Adriana Palacio. Towards plaintext-aware public-key encryption without random
oracles. In ASIACRYPT, volume 3329 of Lecture Notes in Computer Science, pages 48–62, 2004.

[BR93] Mihir Bellare and Phillip Rogaway. Random oracles are practical: A paradigm for designing efficient
protocols. In ACM CCS, pages 62–73, 1993.

[BW06] Xavier Boyen and Brent Waters. Compact group signatures without random oracles. In EUROCRYPT,
volume 4004 of Lecture Notes in Computer Science, pages 427–444, 2006.

[BW07] Xavier Boyen and Brent Waters. Full-domain subgroup hiding and constant-size group signatures. In
PKC, volume 4450 of Lecture Notes in Computer Science, pages 1–15, 2007.

[CGH98] Ran Canetti, Oded Goldreich, and Shai Halevi. The random oracle methodology, revisited. In STOC,
pages 209–218, 1998.

[CGH04] Ran Canetti, Oded Goldreich, and Shai Halevi. On the random-oracle methodology as applied to
length-restricted signature schemes. In TCC, volume 2951 of Lecture Notes in Computer Science,
pages 40–57, 2004.

[CGS07] Nishanth Chandran, Jens Groth, and Amit Sahai. Ring signatures of sub-linear size without random
oracles. In ICALP, volume 4596 of Lecture Notes in Computer Science, pages 423–434, 2007.

[Clo53] Charles Clos. A study of non-blocking switching networks. Bell System Technical Journal, 32(2):406–
424, 1953.

[CS98] Ronald Cramer and Victor Shoup. Design and analysis of practical public-key encryption schemes
secure against adaptive chosen ciphertext attack. In CRYPTO, volume 1462 of Lecture Notes in
Computer Science, pages 13–25, 1998.

[Dam91] Ivan Damg̊ard. Towards practical public key systems secure against chosen ciphertext attacks. In
CRYPTO, volume 576 of Lecture Notes in Computer Science, pages 445–456, 1991.

[Dam92] Ivan Damg̊ard. Non-interactive circuit based proofs and non-interactive perfect zero-knowledge with
preprocessing. In EUROCRYPT, volume 658 of Lecture Notes in Computer Science, pages 341–355,
1992.

[DDN00] Danny Dolev, Cynthia Dwork, and Moni Naor. Non-malleable cryptography. SIAM Journal of Com-
puting, 30(2):391–437, 2000.

[DDO+02] Alfredo De Santis, Giovanni Di Crescenzo, Rafail Ostrovsky, Giuseppe Persiano, and Amit Sahai.
Robust non-interactive zero knowledge. In CRYPTO, volume 2139 of Lecture Notes in Computer
Science, pages 566–598, 2002.

[DDP02] Alfredo De Santis, Giovanni Di Crescenzo, and Giuseppe Persiano. Randomness-optimal characteri-
zation of two NP proof systems. In RANDOM, volume 2483 of Lecture Notes in Computer Science,
pages 179–193, 2002.

[DFN06] Ivan Damg̊ard, Nelly Fazio, and Antonio Nicolosi. Non-interactive zero-knowledge from homomorphic
encryption. In TCC, volume 3876 of Lecture Notes in Computer Science, pages 41–59, 2006.

[DN00] Cynthia Dwork and Moni Naor. Zaps and their applications. In FOCS, pages 283–293, 2000.
[DP92] Alfredo De Santis and Giuseppe Persiano. Zero-knowledge proofs of knowledge without interaction.

In FOCS, pages 427–436, 1992.
[FLS99] Uriel Feige, Dror Lapidot, and Adi Shamir. Multiple non-interactive zero knowledge proofs under

general assumptions. SIAM Journal of Computing, 29(1):1–28, 1999.
[Gen09] Craig Gentry. Fully homomorphic encryption using ideal lattices. In STOC, pages 169–178, 2009.
[GK96] Oded Goldreich and Hugo Krawczyk. On the composition of zero-knowledge proof systems. SIAM

Journal of Computing, 25(1):169–192, 1996.
[GK03] Shafi Goldwasser and Yael Tauman Kalai. On the (in)security of the Fiat-Shamir paradigm. In FOCS,

pages 102–113, 2003.
[GMR89] Shafi Goldwasser, Silvio Micali, and Charles Rackoff. The knowledge complexity of interactive proofs.

SIAM Journal of Computing, 18(1):186–208, 1989.
[GO94] Oded Goldreich and Yair Oren. Definitions and properties of zero-knowledge proof systems. Journal

of Cryptology, 7(1):1–32, 1994.
[GO07] Jens Groth and Rafail Ostrovsky. Cryptography in the multi-string model. In CRYPTO, volume 4622

of Lecture Notes in Computer Science, pages 323–341, 2007.
[GOS06a] Jens Groth, Rafail Ostrovsky, and Amit Sahai. Non-interactive zaps and new techniques for NIZK. In

CRYPTO, volume 4117 of Lecture Notes in Computer Science, pages 97–111, 2006.
[GOS06b] Jens Groth, Rafail Ostrovsky, and Amit Sahai. Perfect non-interactive zero-knowledge for NP. In

EUROCRYPT, volume 4004 of Lecture Notes in Computer Science, pages 339–358, 2006.
[Gro06] Jens Groth. Simulation-sound NIZK proofs for a practical language and constant size group signatures.

In ASIACRYPT, volume 4248 of Lecture Notes in Computer Science, pages 444–459, 2006.
[Gro09] Jens Groth. Linear algebra with sub-linear zero-knowledge arguments. In CRYPTO, volume 5677 of

Lecture Notes in Computer Science, pages 192–208, 2009.
[Gro10] Jens Groth. Short non-interactive zero-knowledge proofs. In ASIACRYPT, volume 6477 of Lecture

Notes in Computer Science, pages 341–358, 2010.
[GS08] Jens Groth and Amit Sahai. Efficient non-interactive proof systems for bilinear groups. In EURO-

CRYPT, volume 4965 of Lecture Notes in Computer Science, pages 415–432, 2008.
[Kil92] Joe Kilian. A note on efficient zero-knowledge proofs and arguments. In STOC, pages 723–732, 1992.
[KP98] Joe Kilian and Erez Petrank. An efficient noninteractive zero-knowledge proof system for NP with

general assumptions. Journal of Cryptology, 11(1):1–27, 1998.
[Mic00] Silvio Micali. Computationally sound proofs. SIAM Journal of Computing, 30(4):1253–1298, 2000.
[MRH04] Ueli M. Maurer, Renato Renner, and Clemens Holenstein. Indifferentiability, impossibility results on

reductions, and applications to the random oracle methodology. In TCC, volume 2951 of Lecture Notes
in Computer Science, pages 21–39, 2004.

[Nao03] Moni Naor. On cryptographic assumptions and challenges. In CRYPTO, volume 2729 of Lecture Notes
in Computer Science, pages 96–109, 2003.

[Nie02] Jesper Buus Nielsen. Separating random oracle proofs from complexity theoretic proofs: The non-
committing encryption case. In CRYPTO, volume 2442 of Lecture Notes in Computer Science, pages
111–126, 2002.

[Ore87] Yair Oren. On the cunning power of cheating verifiers: Some observations about zero knowledge proofs.
In FOCS, pages 462–471, 1987.

[Sah01] Amit Sahai. Non-malleable non-interactive zero-knowledge and adaptive chosen-ciphertext security.
In FOCS, pages 543–553, 2001.

A Heuristic Arguments for the Assumptions

Theorem 7. The q(k)-PKE assumption holds in the generic group model for q(k) = poly(k).

Sketch of proof. In the generic group model, the adversary A acts obliviously to the actual repre-
sentation of the group elements and only performs generic group operations such as multiplying
elements in G and GT , pairing elements in G, and comparing elements to see if they are identical.

When A only does generic group operations it can only produce new elements in G by mul-
tiplying existing group elements together. The extractor XA can keep track of all the multiplica-
tions and since the adversary starts out with the group elements g, gx, . . . , gx

q
, gα, gαx, . . . , gαx

q

the elements c, ĉ must be of the form

c = ga0(gα)b0
∏
i∈[q]

(gx
i
)ai(gαx

i
)bi ĉ = gu0(gα)v0

∏
i∈[q]

(gx
i
)ui(gαx

i
)vi ,

for known a0, b0, u0, v0, . . . , aq, bq, uq, vq. If ai = vi and bi = ui = 0 the extractor outputs
a0, . . . , aq, which satisfies the condition.

Let us now show that there is negligible probability for ĉ = cα if ai 6= vi or bi 6= 0 or ui 6= 0
for some i. Taking discrete logarithms the condition ĉ = cα says

q∑
i=0

uix
i +

q∑
i=0

viαx
i = α(

q∑
i=0

aix
i +

q∑
i=0

biαx
i) =

q∑
i=0

aiαx
i +

q∑
i=0

biα
2xi.

With ai 6= vi or bi 6= 0 or ui 6= 0 the two multivariate polynomials in α and x are different
formal polynomials. Since the adversary is oblivious to the actual representation of the group
elements it will do the same group operations no matter the actual values of α and x; so the
values a0, . . . , vq are generated (almost4) independently of α and x. By the Schwartz-Zippel
lemma there is negligible probability for the two polynomials evaluating to the same when we
choose α, x randomly, and therefore negligible probability for ĉ = cα. �

Theorem 8. The q(k)-CPDH assumption holds in the generic group model for q(k) = poly(k).

Sketch of proof. In the generic group model, the adversary A acts obliviously to the actual repre-
sentation of the group elements and only performs generic group operations such as multiplying
elements in G and GT , pairing elements in G, and comparing elements to see if they are identical.

When A only does generic group operations it can only produce new elements in G by
multiplying existing group elements together. Keeping track of the group elements we get that
it outputs

y =

q∏
i=0

(gx
i
)ai

∏
i 6=j

(gβx
i
)bi

for known a0, b0, . . . , aq, bq. Taking discrete logarithms on the condition y = gβx
j

we get

q∑
i=0

aix
i +

∑
i 6=j

biβx
i = βxj .

This can be seen as an equation involving two different formal polynomials over β and x.

Since the adversary is oblivious to the actual representation of the group elements it will do
the same group operations no matter the actual values of β and x; so the values a0, b0, . . . , aq, bq

4 A generic group adversary may learn a little bit about α and x by comparing group elements. However, the
information leak is negligible, so we skip this part in the proof.

are generated (almost5) independently of β and x. By the Schwartz-Zippel lemma there is
negligible probability for the two different polynomials evaluating to the same when we choose
β, x randomly, and therefore negligible probability for y = gβx

j
. �

5 A generic group adversary may learn a little bit about β and x by comparing group elements. However, the
information leak is negligible, so we skip this part in the proof.

